Highly Stereoselective Synthesis of Novel α-Haloenamides via a Mild and Efficient Hydrohalogenation of Ynamides

Jason A. Mulder, Kimberly C. M. Kurtz, Richard P. Hsung,*,† Heather Coverdale, Michael O. Frederick,‡ Lichun Shen, and Craig A. Zificsak

*Department of Chemistry, Uni*V*ersity of Minnesota, Minneapolis, Minnesota 55455*

hsung@chem.umn.edu

Received February 24, 2003

ABSTRACT

A highly stereoselective preparation of novel chiral (*E*)-α-haloenamides under mild conditions utilizing magnesium halide salts is described. **This unexpected mild and efficient hydrohalogenation reaction highlights another synthetic utility of ynamides.**

The evidence for a renewed interest in ynamide chemistry has been compelling in recent years. 1^{-14} Ynamides have become proven equivalents of classical ynamines¹⁰ because

† Recipient of a 2001 Camille Dreyfus Teacher-Scholar Award.

‡ Recipient of a 2002 Pfizer Undergraduate Summer Fellowship.

(1) For a recent review on ynamides and ynamines, see: Zificsak, C.

A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. *Tetrahedron* **2001**, *57*, 7575.

(2) For ealier work, see: (a) Janousek, Z.; Collard, J.; Viehe, H. G. *Angew. Chem., Int. Ed. Engl.* **1972**, *11*, 917. (b) Goffin, E.; Legrand, Y.; Viehe, H. G. *J. Chem. Res.*, *Synop.* **1977**, 105. (c) Mahamoud, A.; Galy, J. P.; Vincent, E. J.; Barbe, J. *Synthesis* **1981**, 917. (d) Balsamo, A.; Macchia, B.; Macchia, F.; Rossello, A.; Domiano, P. *Tetrahedron Lett*. **1985**, *26*, 4141. (e) Tikhomirov, D. A.; Eremeev, A. V. *Chem. Heterocycl. Compd.* **1987**, *23*, 1141.

(3) (a) Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. *Org. Lett.* **2003**, *5*, 67. (b) Saito, N.; Sato, Y.; Mori, M. *Org. Lett.* **2002**, *4*, 803. (c) Hoffmann, R. W.; Bru¨ckner, D. *New J. Chem.* **2001**, *25*, 369.

(4) (a) Rainier, J. D.; Imbriglio, J. E. *J. Org. Chem.* **2000**, *65*, 7272. (b) Rainier, J. D.; Imbriglio, J. E. *Org. Lett.* **1999**, *1,* 2037.

(5) (a) Witulski, B.; Alayrac, C. *Angew. Chem., Int. Ed.* **2002**, *41*, 3281. (b) Witulski, B.; Gössmann, M. Synlett 2000, 1793. (c) Witulski, B.; Buschmann, N.; Bergsträsser, U. *Tetrahedron* 2000, 56, 8473. (d) Witulski, B.; Stengel, T.; Ferna`ndez-Herna`ndez, J. M. *Chem. Commun*. **2000**, 1965. (e) Witulski, B.; Gössmann, M. *Chem. Commun.* 1999, 1879. (f) Witulski, B.; Stengel, T. *Angew. Chem., Int. Ed.* **1998**, *37*, 489. (g) Witulski, B.; Stengel, T. *Angew. Chem., Int. Ed.* **1998**, *38*, 2426.

(6) (a) Minie`re, S.; Cintrat, J.-C. *J. Org. Chem.* **2001**, *66*, 7385. (b) Minière, S.; Cintrat, J.-C. *Synthesis* 2001, 705. (c) Timbart, L.; Cintrat, J.-C. *Chem. Eur. J.* **2002**, *8*, 1637.

10.1021/ol0300266 CCC: \$25.00 © 2003 American Chemical Society **Published on Web 04/05/2003**

they possess the right balance between reactivity and stability, allowing them to be handled easily and utilized in a diverse array of highly stereoselective inter- and intramolecular reactions; $3-7$ this versatility would be nearly impossible to

(10) For reviews on ynamines, see: (a) Himbert, G. In *Methoden Der Organischen Chemie* (*Houben-Weyl*); Kropf, H., Schaumann, E., Eds.; Georg Thieme Verlag: Stuttgart, 1993; pp 3267-3443. (b) Collard-Motte, J.; Janousek, Z. *Top. Curr. Chem.* **1986**, *130*, 89. (c) Ficini, J. *Tetrahedron* **1976**, *32*, 1448.

(11) (a) Huang, J.; Xiong, H.; Hsung, R. P.; Rameshkumar, C.; Mulder, J. A.; Grebe, T. P. *Org. Lett.* **2002**, *4*, 2417. (b) Mulder, J. A.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. *Org. Lett.* **2002**, *4*, 1383. (c) Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.; Douglas, C. J.; Xiong, H.; Mulder, J. A. *Org. Lett.* **1999**, *1*, 1237.

(12) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. *J. Am. Chem. Soc.* **2003**, *125*, 2368.

(13) For our original synthesis, see: Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C. J.; Hsung, R. P. *Tetrahedron* **2001**, *57*, 459.

2003 Vol. 5, No. 9 ¹⁵⁴⁷-**¹⁵⁵⁰**

⁽⁷⁾ Schottelius, M. J.; Chen, P. *Helv. Chim. Acta* **1998**, 81, 2341.
(8) (a) Brückner, D. *Synlett* **2000**, 1402. (b) Fromont, C.; Masson, S. *Tetrahedron* **1999**, *55*, 5405. (c) Feldman, K. S.; Bruendl, M. M.; Schildknegt, K.; Bohnstedt, A. C. *J. Org. Chem.* **1996**, *61*, 5440

^{(9) (}a) Majumdar, K. C.; Ghosh, S. K. *Synth. Commun*. **1994**, *24*, 217. (b) Joshi, R. V.; Xu, Z.-Q.; Ksebati, M. B.; Kessel, D.; Corbett, T. H.; Drach, J. C.; Zemlicka, J. *J. Chem. Soc., Perkin Trans. 1* **1994**, 1089. (c) Radl, S.; Kovarova, L. *Collect. Czech. Chem. Commun.* **1991**, *56*, 2413. (d) Novikov, M. S.; Khlebnikov, A. F.; Kostikov, R. R. *J. Org. Chem. USSR* **1991**, *27*, 1576

achieve using traditional ynamines. In our own studies, we have explored tandem en-ynamide RCM, stereoselective Ficini-Claisen rearrangements, and other pericyclic cycloadditions.11 We have also recently reported an improved ynamide synthesis involving a copper-catalyzed coupling of amides and alkynyl bromides¹² that should improve the accessibility of ynamides,^{13,14} thereby allowing greater synthetic utility. With these accomplishments in hand, we further explored new cycloaddition reactions of ynamides. Instead we unexpectedly discovered a mild, facile, and highly stereoselective preparation of (E) - α -haloenamides (Figure 1).

 α -Haloenamides are a synthetically versatile variant of enamides.¹⁵⁻¹⁷ α -Haloenamides offer rapid access to α -metalated enamides that can serve as α -acyl anion equivalents¹⁸ or be involved transition metal mediated reactions.^{6a,c} Despite this versatility, there are a very few practical preparations of α -haloenamides, thereby severely limiting their synthetic utility. One of the more useful existing protocols involves direct addition of hydrogen halide (HX) across the alkyne.¹⁹ However, this method often results in poor regio- and stereochemical control, and separation of the resulting isomeric products is often nontrivial. Hydrohalogenation is also a common method for preparation of other α -halo-heteroatom-substituted alkenes,^{20,21} albeit with few known chiral examples.20a,d One recent improvement to this protocol is Jin's highly selective and elegant synthesis of α -halo vinyl ethers^{20a-c} and sulfides^{20d} using HX generated in situ from

(16) For recent studies involving enamides, see: a) Fuchs, J. R.; Funk, R. L. *Organic Lett.* **2001**, *3*, 3349. (b) Abbiati, G.; Clerici, F.; Gelmi, M. L.; Gambini, A.; Pilati, T. *J. Org. Chem.* **2001**, *66*, 6299. (c) Maeng, J.-H.; Funk, R. L. *Org. Lett.* **2000**, *3*, 1125. (d) Shen, R.; Porco, Jr., J. A. *Org. Lett.* **2000**, *2*, 1333. (e) Bach, T.; Schröder, J.; Brandl, T.; Hecht, J.; Harms, K. *Tetrahedron* **1998**, *54*, 4507. (f) Ogawa, T.; Kiji, T.; Hayami, K.; Suzuki, H. *Chem. Lett.* **1991**, 1443.

(17) For recent examples of α -haloenamides (excluding heterocyclic variants), see: (a) Boiko, V. I.; Sinitsa, A. A.; Onys'ko, P. P. *Russ. J. Gen. Chem.* **1999**, *69*, 1879. (b) Meier, S.; Werthwein, E. U. *Chem. Ber.* **1990**, *¹²³*, 2339. (c) Kondrat'eva, G. Y.; Agafonov, N. E.; Stashina, G. A. *Iz*V*. Akad. Nauk, Ser. Khim.* **1989**, *9*, 2038. (d) Ivanov, C.; Dobrev, A.; Nechev, L.; Nikiforov, T. *Synth. Commun.* **1989**, *19*, 297. (e) Mironova, D. F.; Loginova, N. A. *Ukr. Khim. Zh.* **1986**, *52*, 71. (f) Del'tsova, D. P.; Zeifman, Y. V.; Gambaryan, N. P. *Iz*V*. Akad. Nauk, Ser. Khim.* **¹⁹⁸⁵**, *¹¹*, 2533. (g) Bal'on, Y. G.; Moskaleva, R. N. *Zh. Org. Khim.* **1983**, *19*, 2456.

(18) Lander, P.; Hegedus, L. S. *J. Am. Chem. Soc.* **1994**, *116*, 8126.

(19) (a) Bal'on, Y. G.; Moskaleva, R. N. *Zh. Org. Khim.* **1983**, *19*, 2456. (b) Bal'on, Y. G.; Moskaleva, R. N. *Zh. Org. Khim.* **1978**, *14*, 147.

TMSX and methanol. We report here a highly stereoselective preparation of chiral α -haloenamides via a mild and unexpected hydrohalogenation of ynamides.

In an attempt to utilize Lewis acids to facilitate the $[2 + 2]$ cycloaddition^{22,23} of ynamide **1** with cyclohexenone (shown in Scheme 1) $MgBr₂$ (1.0 equiv) was added to the

reaction mixture. The reaction did not yield any of the desired cycloadducts 2 but instead provided the α -haloenamides 3^{24} in 60% yield with a modest E/Z ratio of $3:1^{25}$ via an unexpected hydrohalogenation of ynamide **1**. The regioselectivity was very high with no (E) - or (Z) - β -haloenamide found.

We investigated the reaction variables of our α -haloenamide synthesis as summarized in Table 1. The hydrohalogenation reaction can be carried out in a variety of solvents as seen utilizing ynamide 1 (entries $1-4$), with only the use of methanol giving undesired products (entry 1). With CH3- CN and THF, reactions gave reasonable yields of α -halo-

Table 1.

⁽¹⁴⁾ For a review on synthesis of ynamides, see: Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. *Synlett* **2003**, in press.

⁽¹⁵⁾ For reviews on enamides, see: (a) Rappoport, Z. The chemistry of enamines. In *The Chemistry of Functional Groups*; John Wiley and Sons: 1994, New York. (b) Whitesell, J. K.; Whitesell, M. A. *Synthesis* **1983**, 517. (c) Hickmott, P. W. *Tetrahedron* **1982**, *38*, 1975. (d) Hickmott, P. W. *Tetrahedron* **1982**, *38*, 3363. (e) Lenz, G. R. *Synthesis* **1978**, 489.

enamide **3** but required reaction temperatures of 60 °C or higher to drive the reaction to completion (entries 2 and 3).

We found CH_2Cl_2 to be an ideal solvent for this reaction (entry 4), allowing the reaction to progress at ambient temperature leading to the (*E*)-haloenamide **3** in high yield with high diastereoselectivity. The use of $MgCl₂·6H₂O$ (entries 5 and 6) required elevated reaction temperatures ≥ 65 °C in a sealed vial to drive the reaction, and thus 1,2 dichloroethane was the preferred solvent (entry 6). Poor solubility of $MgCl_2$ ^{-6H₂O may be inhibitive to the reaction} in this instance. CH_2Cl_2 was also found to be the solvent of choice for use with MgI2, especially with respect to stereoselectivity (entry 7 versus 8). In contrast to the reasonable yields obtained using CH3CN in entries 2, 5, and 7, attempts to use additives other than magnesium halides in $CH₃CN$ failed even at extended reaction times. The use of CuI (entry 9) led to undesired products, $ZnCl₂$ (entry 10) led exclusively to ynamide hydrolyses, and NaBr (entry 11) yielded no reaction.

Equipped with optimized reaction conditions, we probed the scope of this hydrohalogenation reaction using a variety of different ynamides (Table 2). Ynamides of the Evans'

Table 2.							
vnamide ^a $R =$ entry		$R_1 =$	product	pro-acid		V ld% b $E:Z$	
6 1 $\overline{7}$ 2 3 8 9 4 5 9	$R-Ph$ R -CH ₂ Ph R S-Pr R -CHPh ₂ R, R-CHPh ₂	Ph Ph $n - C_5 H_{11}$ $n - C_4$ H ₉ $n - C_4$ H ₉	R R,	15 16 17 18 19	Mgl ₂ Mgl ₂ Mgl ₂ MgBr ₂ Mgl ₂	86 64 84 82	84 > 96:4 >96:4 >96:4 >96:4 >96:4
10 6 10 $\overline{7}$ 10 8 9 11 10 11 11 11 12 11 13 12	R, Ω	$n\text{-}G_5H_{11}$ $n-C5H11$ $n - C_5H_{11}$ Ph Ph Ph Ph iPr	R_1	20 21 21 22 23 24 25 26	Mgl ₂ MgBr ₂ TMSBr TMSOTf TMSCN MgBr ₂ Mgl ₂ MgBr ₂	90 96 62 0 0 74 71 77	91:9 >96.4 >96.4 N/A N/A >96:4 >96:4 94:6
14 12 15 13 16 14	Ph NMe ₂	Ær	Ph NMe ₂	27 28 29	Mgl ₂ Mgl ₂ Mgl ₂	99 85 37	>96:4 >96:4 >96.4

 a Reaction conditions: ynamide (0.03 M) and 1 equiv of MgX₂ in wet CH₂Cl₂, 3-18 h, rt. *b* Isolated yield. *c* Ratio determined by ¹H and/or ¹³C NMR.

auxiliary²⁶ $6-8$ (entries $1-3$), Sibi auxiliary²⁷ 9 (entries 4) and 5), and indanol-type $10-12$ (entries 6, 7, $11-14$) were

all successfully converted to the respective α -haloenamides **¹⁵**-**²¹** and **²⁴**-**²⁷** in high yield with high levels of regioand stereochemical control. This methodology is applicable also to acyclic ynamides, such as chiral acyclic ynamide **13** and urea-based ynamide 14 , which form α -haloenamides 28 and **29**, respectively, with excellent selectivity. The modest yield for the urea-based ynamide **14** is due to slow conversion rates with this type of system. Stereochemistry of the (*E*)- α -haloenamide was unambiguously assigned from the X-ray crystal structure of the major isomer of α -haloenamide 26, thereby suggesting a *syn*-addition of HX.20a

It is noteworthy that to compare Jin's preparation of (*E*)- α -halo vinyl ethers we treated ynamide 10 with 1.0 equiv each of trimethylsilyl bromide (TMSBr) and MeOH at -40 °C (entry 8), producing a single isomer of **21** in 62% yield in favor of the (*E*)-isomer along with 10% hydrolyses of **10**. An effort to extend this methodology to form other useful α -substituted enamides using TMSOTf and TMSCN failed even at elevated temperatures (see entries 9 and 10).

The proposed source of HX in this unexpected hydrohalogenation of ynamides is in situ generation of HX from the magnesium salt MgX_2 and trace H_2O in the reaction. The source of the serendipitous water could be the magnesium salt and/or the reaction solvent. To support this proposition, hydrobromination of ynamide **11** was carried out again under the standard conditions (freshly opened $CH₂Cl₂$ with water concentration 0.01% v/v) along with a second reaction conducted under more vigorously anhydrous conditions: (a) dichloromethane freshly distilled from CaH2, and (b) anhydrous MgBr2 freshly prepared from magnesium metal and 1,2-dibromoethane. The conversion rate for the two reactions was monitored by LCMS. After 4.5 h, the conversion to product for the standard "wet" reaction was 37% and only 11% for the anhydrous version. After 19 h, the conversions were 71% and 28%, respectively. This rate difference suggests that the anhydrous system inhibited the formation of HBr in situ.

(24) All new compounds are characterized by 1H NMR, 13C NMR, FTIR, mass spectroscopy, and $[\alpha]^{23}$ _D.

(25) Assigned later by correlating with X-ray structure of α -haloenamide **26**.

(26) (a) Evans, D. A. *Aldrichimica Acta* **1982**, *15*, 23. (b) Heathcock, C. H. *Aldrichimica Acta* **1990**, *23*, 99.

⁽²⁰⁾ Chiral and achiral α -halo vinyl ethers: (a) Yu, W.; Jin, Z. *J. Am. Chem. Soc.* **2000**, *122*, 9840. Applications in synthesis: (b) Yu, Z.; Jin, Z. *J. Am. Chem. Soc.* **2001**, *123*, 3369. (c) Yu, Z.; Jin, Z. *J. Am. Chem. Soc.* **2002**, *124*, 6576. (d) Su, M.; Kang, Y.; Yu, W.; Hua, Z.; Jin, Z. *Org. Lett.* **²⁰⁰²**, *⁴*, 691. R-Halo vinyl sulfides: Su, M.; Yu, W.; Jin, Z. *Tetrahedron Lett.* **2001**, *42*, 3771.

⁽²¹⁾ Other recent examples for α -halo vinyl ethers: (a) Bacilieri, C.; Reic, S.; Neuenschwander, M. *Hel*V*. Chim. Acta* **²⁰⁰⁰**, *⁸³*, 1182. (b) Glazunova, E. Y.; Lutsenko, S. V.; Efimova, I. V.; Trostyanskaya, I. G.; Kazankova, M. A.; Beletskaya, I. P. *Russ. J. Org. Chem.* **1969**, *34*, 1104. R-Halo vinyl sulfides: (c) Duncan, D.; Livinghouse, T. *J. Org. Chem.* **²⁰⁰¹**, *66*, 5237. (d) Stefani, H. A.; Comasseto, J. V.; Petragnani, N. Braga, A. L.; Menezes, P. H. Gusevskaya, E. V. *Phosporus, Sulfur Silicon Relat. Elem.* **1997**, 126 , 211 . α -Halo vinyl sulfates: (e) Paley, R. S.; Dios, A. de; Estroff, L. A.; Lafontine, J. A.; Montero, C. et al. *J. Org. Chem.* **1997**, *62*, 6326. (f) Zhong, P.; Huang, X.; Ping-Guo, M. *Tetrahedron* 2000, 56, 8921. α-Halo vinyl phosphonates: (g) Kobayashi, Y.; William, A. D. *Org. Lett.* **2002**, *4*, 4241. (h) Zhang, X.; Burton, D. J. *J. Fluorine Chem.* **2001**, *112*, 47.

⁽²²⁾ For a review on thermal $[2 + 2]$ cycloaddition reactions, see: Baldwin, J. E. Comprehensive Organic Synthesis; Trost, B. M. Fleming, I.; Pattenden, G., Eds.; Pergamon Press: New York, 1991, Vol. 5, p 63.

⁽²³⁾ For examples of $[2 + 2]$ cycloaddition reaction of ynamines with enones see: (a) Ficini, J.; Krief, A.; Guingant, A.; Desmaele, D. *Tetrahedron Lett.* **1981**, 725. (b) Ficini, J.; Guingant, A.; d'Angelo, J.; Stork, G. *Tetrahedron Lett.* **1983**, 907.

^{(27) (}a) Sibi, M. P.; Deshpande, P. K.; Ji, J. G. *Tetrahedron Lett.* **1995**, *36*, 8965. (b) Sibi, M. P.; Ji, J. G. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 190. (c) Nakai, T.; Setoi, H.; Kageyama, Y. *Tetrahedron Lett.* **1981**, *22*, 4097.

There are many potential applications for α -haloenamides in organic synthesis. They should provide efficient entry into α -stannyl enamides such as those used by Hegedus^{18,28} and Cintrat.6,29 Our methodology offers the additional benefit of being able to form α -stannyl enamides that possess diverse functionality at the β -carbon as well. In addition, α -haloenamides are excellent candidates for use in transition metal mediated reactions such as Sonagashira coupling.30

As shown in Scheme 2, both α -bromo- and α -iodoenamides **21** and **20** underwent efficient coupling with trimethylsilylacetylene and phenylacetylene to yield enynes **30** and **31** in 74% to 90% yield, respectively. Even electron-poor

(30) Sonagashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, 4467.

propiolate will couple with α -iodoenamide **20**, albeit in lower yield. The reaction must be stopped at 50% conversion to actually minimize an ensuing cycloaddition of enyne **32** with propiolate. The enyne products **³⁰**-**³²** have a variety of uses in organic chemistry, including being prime candidates for cross-benzannulation³¹ or Diels-Alder reactions,³² with the chiral auxiliary of the enamide potentially providing asymmetric induction.³³

We have described a highly stereoselective synthesis of (E) - α -haloenamides using magnesium salts in wet solvents at ambient or moderate temperature. In conjunction with our one-step ynamide synthesis using Cu(I) salts, this reaction provides a facile entry to α -haloenamides, which are versatile synthons shown to undergo subsequent Sonagashira couplings en route to chiral amide-substituted enynes. This unexpected hydrohalogenation reaction highlights another synthetic utility of ynamides. Further applications of α -haloenamides are currently under investigation.

Acknowledgment. The authors thank the National Science Foundation (CHE-0094005) for support of this work. J.A.M. thanks UMN for a Dissertation Fellowship.

Supporting Information Available: Experimental procedures and characterization data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0300266

⁽²⁸⁾ Riches, A. G.; Wernersbach, L. A.; Hegedus, L. S. *J. Org. Chem.* **1998**, *63*, 4691.

⁽²⁹⁾ Minie`re, S.; Cintrat, J.-C. *Synthesis* **2001**, 705.

⁽³¹⁾ For an example, see: Saito, S.; Uchiyama, N.; Gevorgyan, V.; Yamamoto, Y. *J. Org. Chem.* **2000**, *65*, 4338.

⁽³²⁾ Examples of enynes in Diels Alder reactions: (a) Hoffmann, H. M. R.; Mucha, B.; Oehlerking, H. H.; Prahst, G. W. *Tetrahedron* **1993**, *49*, 8999. (b) Spino, C.; Crawford, J. *Tetrahedron Lett.* **1994**, *35*, 5559. (c) Burrell, R. C.; Daoust, K. J.; Bradley, A. Z.; DiRico, K. J.; Johnson, R. P. *J. Am. Chem. Soc.* **1996**, *118*, 4218.

⁽³³⁾ Xiong, H.; Hsung, R. P.; Shen, L.; Hahn, J. M. *Tetrahedron Lett*. **2002**, *43*, 4449.